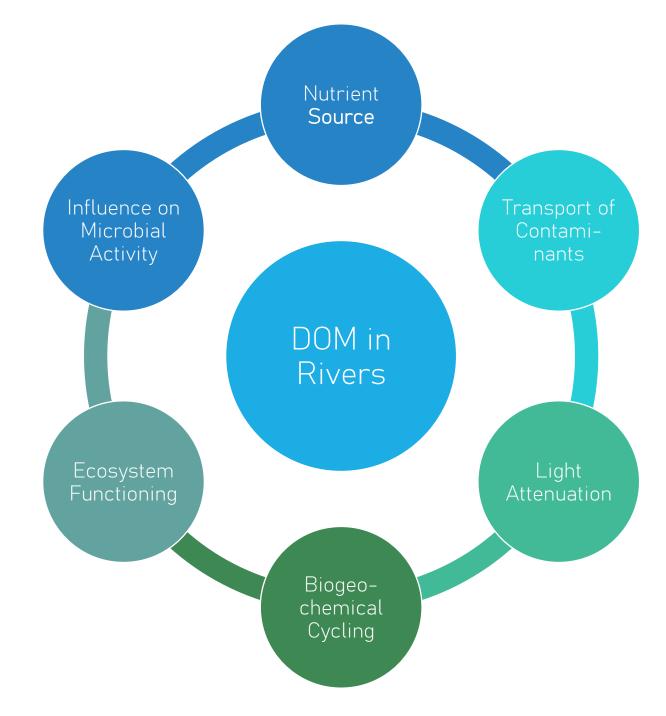
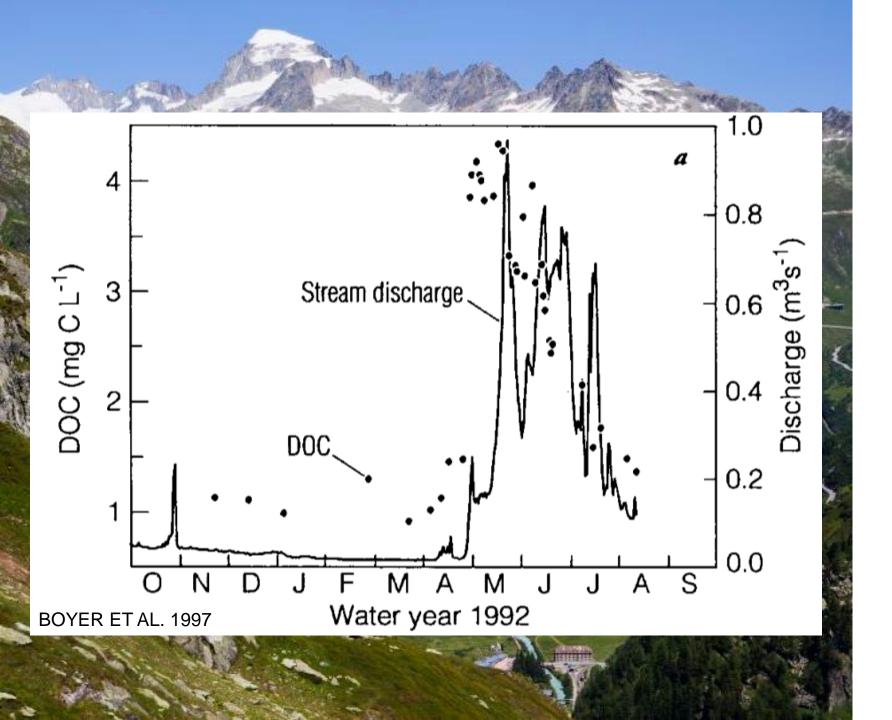


Nora Domrös, Leila Mégevand, Valeria Pessler Global Change Ecology & Fluvial Ecosystems

- Model to estimate the export of DOM
- Explore **importance** of
 - hydrologic event intensity and
 - stream connectivity

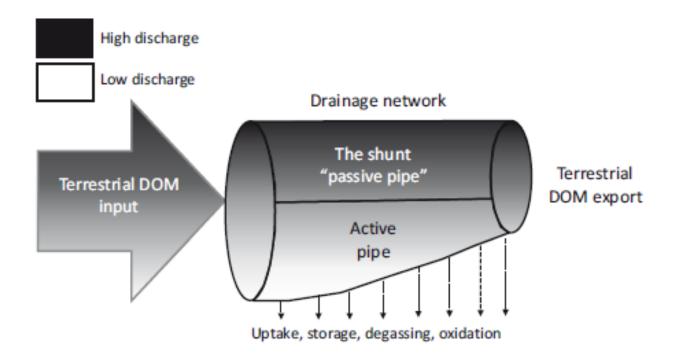

for regulating DOM fluxes


- Provides a quantitative framework to evaluate the relationships among
 - flow,
 - DOM supply, and
 - utilization

in drainage networks

- Important for advancing our understanding of nutrient dynamics in aquatic systems

INTRODUCTION



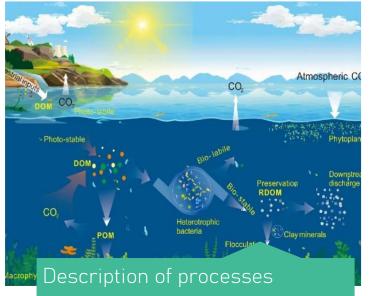
- Sudden and significant release of DOM
- Significant hydrological events
- Increase of concentration in rivers from terrestrial landscape
- Infrequent but high magnitude


- Rapid transport of DOM bypassing headwater streams
- Due to increased velocity
- Affects regional biogeochemical cycles

PULSE AND SHUNT

MOTIVATION - WHY DO WE NEED THE PSC

- Importance of DOM pulses and hydrologic variation recognized:
 - Hydrologic events: 86% of annual forested DOC export
 - Large hydrologic events (5% of days/year):
 60% of annual forested DOC export
- Other models: RCC (River continuum concept) & RES (Riverine ecosystem synthesis)
- → don't integrate pulse & shunt into their models



- · 200 000 km² temperate forest watershed
- 8th order drainage network w/ main-stream length of 500 km

- Drainage network connectivity 8 geomorphology
- · Hydraulic geometry

- Concentration & discharge relationships
- Bioreactivity
- Transfers and downstream subsidies

METHODS

RIVER NETWORK ATTRIBUTES

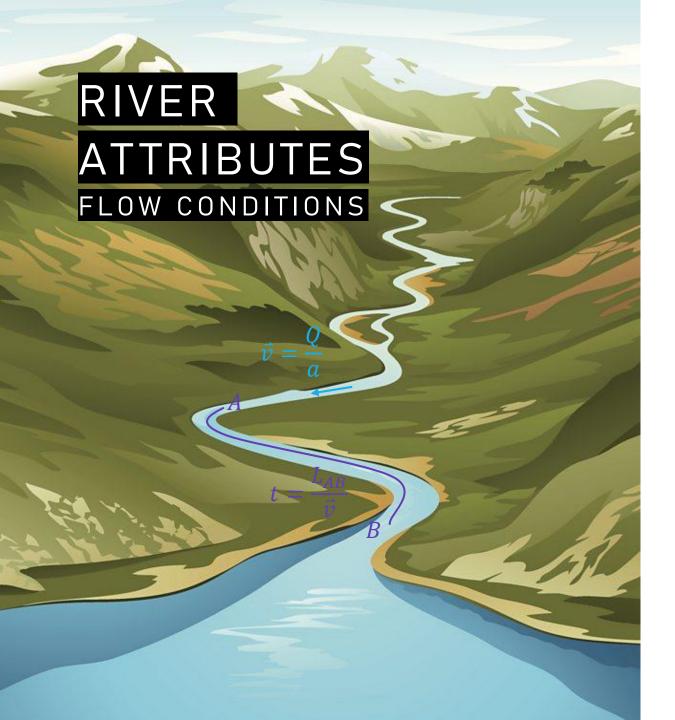
DRAINAGE NETWORK CONNECTIVITY & GEOMORPHOLOGY

Stream Segments

$$R_n = \frac{n_{o+1}}{n_o}$$

Stream lengths

$$R_L = \frac{L_{o+1}}{L_o}$$


Scale of watershed areas

$$R_a = \frac{a_{o+1}}{a_o}$$

Number of connections

$$T_v = T_1(R_t)^{0-1}$$

Stream water velocity

Estimated for various discharge conditions (Q) and stream orders:

$$V_o = aQ^b$$

with

$$a \approx -1.35$$

$$b \approx 0.02$$

Residence time

for each stream order

$$T_o = \frac{L_o}{V_o}$$

with

 L_0 – segment length

RIVER NETWORK ATTRIBUTES

TABLE 1. River network attributes for a hypothetical eighth-order forested New England watershed.

Order	No. stream segments	Mean length (km)	Mean basin area (km²)	Velocity (m/s) for $Q = 0.83$		Residence time (d) for $Q = 0.83$	Velocity (m/s) for $Q = 0.1$	Residence time (d) for $Q = 0.1$
1	25 581	5.6	8	0.26		0.25	0.17	0.36
2	5561	10.6	21	0.31	Ш	0.40	0.21	0.58
3	1209	20.2	97	0.41	Ш	0.57	0.28	0.85
4	263	38.4	447	0.55	Ш	0.80	0.37	1.21
5	57	72.9	2055	0.76	Ш	1.10	0.49	1.71
6	12	138.5	9452	1.07	Ш	1.50	0.68	2.37
7	3	263.2	43 478	1.51		2.01	0.93	3.24
8	1	500.0	200 000	2.18		2.65	1.32	4.37

Notes: Stream number, length, and basin area approximate data from NHDplus Hydrosheds (http://www.horizon-systems.com/nhdplus/). Also provided are the velocity and residence time for stream orders for discharge (Q; cm/d) at the effective discharge for dissolved organic carbon (DOC) assuming annual discharge data from three forested headwater streams in New England (Fig. 2) and a nominal discharge of 0.1 cm/d.

DESCRIPTION OF PROCESSES

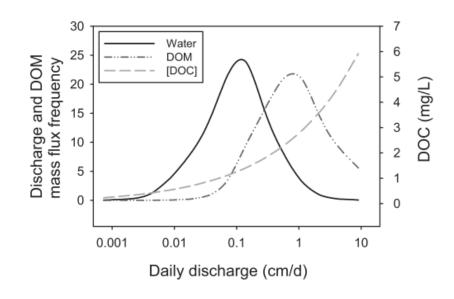
DOM CONCENTRATION AND DISCHARGE RELATIONSHIPS

Discharge variability

Empirical value from flow-frequency curves \rightarrow likelihood f(Q) and discharge Q

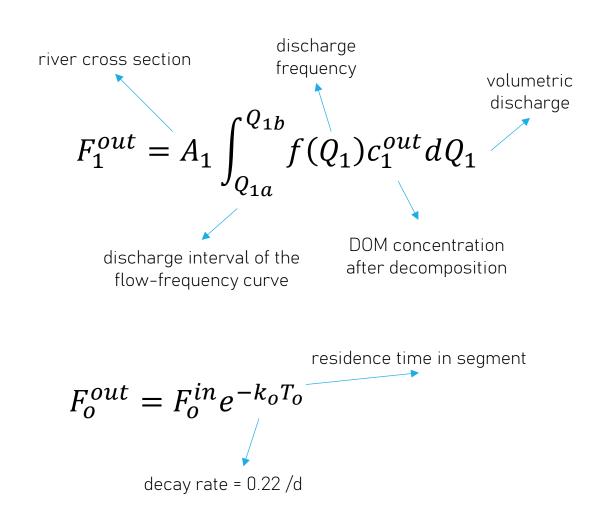
2. Concentration of DOM in 1st order streams

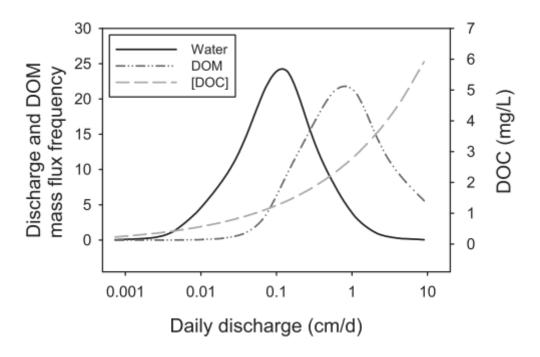
$$c_1^{in} = gQ^h$$


with

Q - volumetric discharge per watershed area,

g = 1,02 and h = 0,345 (empirical)


3. **Decomposition** (linear kinetics reaction)


$$c_1^{out} = c_1^{in} e^{-kT_1}$$

DESCRIPTION OF PROCESSES

DOWNSTREAM DOM TRANSFER BETWEEN STREAM ORDERS

PSC model reveals macrosystem watershed properties.

- DOM subsidies
- Importance of event frequency and size
- Influence of seasonality

RESULTS: DOM SUBSIDIES

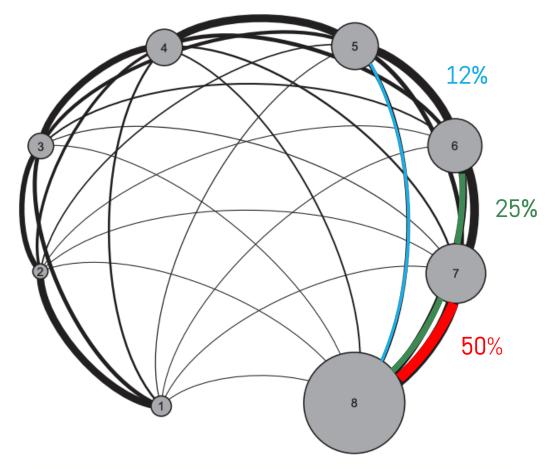


Fig. 3. A network graph for predicted annual uptake of terrestrial DOC among stream orders for a hypothetical large forested watershed using the pulse-shunt concept (PSC) modeling framework and assumptions outlined in this study.

- Largest removal of DOM in higher order streams.

- Preceding 3 orders transfer most of the DOM.

Law of Stream Subsidies:

$$R_s = \frac{F_{o+1}}{F_o}$$

RESULTS: EVENT FREQUENCY & INTENSITY

TABLE 3. The impact of discharge event size on fluxes of DOC off the landscape and to the ocean.

Size of event (cm/d)	Annual number of events	Terrestrial DOC input (g·m ⁻² ·yr ⁻¹)	Removal (%)	Export to ocean $(g \cdot m^{-2} \cdot yr^{-1})$
0.2 (Light rain or drizzle)	500	1.59	85	0.23
0.5	200	2.12	79	0.45
1 (Steady snowmelt or mode	rate rain) 100	2.77	74	0.71
5	20	4.83 × 1.7	61	1.87 × 2.7
10 (Major Storm)	10	6.14	56	2.73

total mass processed by the river increases, but % of DOM removed decreases,

RESULTS: SEASONALITY EFFECTS

Decomposition:

$$c_1^{out} = c_1^{in} e^{-kT_1}$$

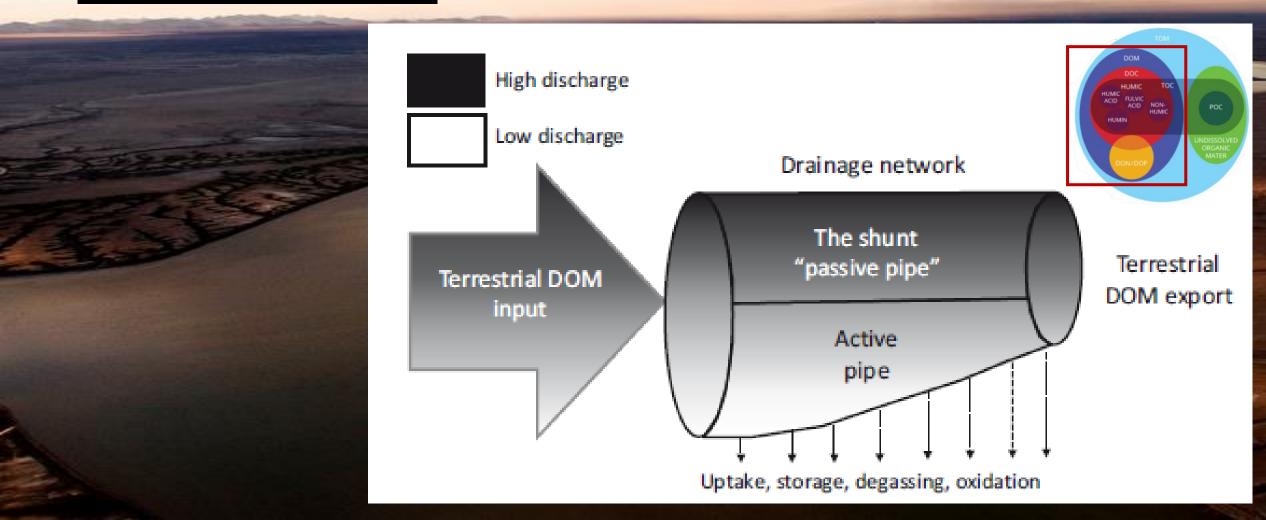
DOM processing adjusted for temperature:

$$c_1^{in} = gQ^h + (W_t - 15) \times 0.15$$

Water Temperature Base case temperature (C°) Emperical factor (Raymond & Saiers, 2010)

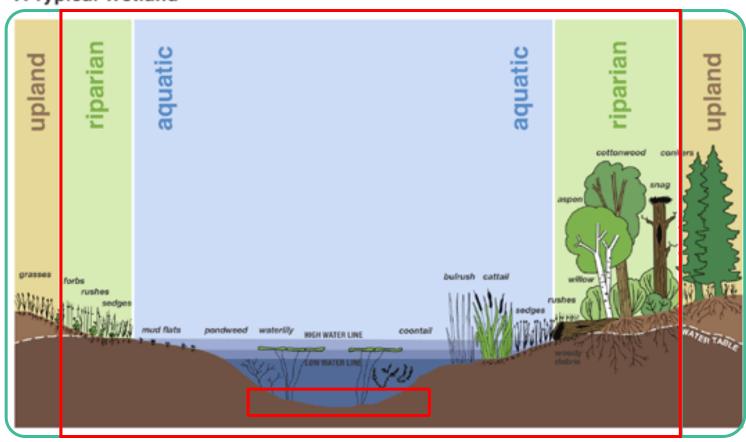
Table 4. Results from an analysis where both the concentration of DOC and the decomposition constant (k) were allowed to vary as a function of temperature.

Flux	5°C	15°C	25°C
Terrestrial DOC input (mg·m ⁻² ·d ⁻¹)	48.8	82.5	116.3
Terrestrial DOC uptake (mg·m ⁻² ·d ⁻¹)	16.3	45.7	92.3
Terrestrial DOC export (mg·m ⁻² ·d ⁻¹)	32.5	36.8	24
DOC (mg/L)	2.2	3.7	5.2
Uptake (%)	33	55	79


RESULTS: SEASONALITY EFFECTS

- More DOC is delivered in the water months
- Higher DOC retention in warmer months
- Suggests that there is an "optimized T" for DOM export
- Seasonal variability plays a crucial role in carbon dynamics.

TABLE 4. Results from an analysis where both the concentration of DOC and the decomposition constant (k) were allowed to vary as a function of temperature.


Flux	5°C	15°C	25°C
Terrestrial DOC input (mg·m ⁻² ·d ⁻¹)	48.8	82.5	116.3
Terrestrial DOC uptake (mg·m ⁻² ·d ⁻¹)	16.3	45.7	92.3
Terrestrial DOC export (mg·m ⁻² ·d ⁻¹)	32.5	36.8	24
DOC (mg/L)	2.2	3.7	5.2
Uptake (%)	33	55	79

POSSIBLE PSC ADAPTATIONS

FUNCTIONAL LANDSCAPE UNITS

A Typical Wetland

- Preliminary PSC model focuses on on upland areas and does not incorporate other key functional landscape units.
 - Wetlands & riparian zones contribute DOM all along the continuum
 - Reservoirs, hyporheic zones, and floodplains as they impact DOM pathways

(Pamela A mason, 2016))

OTHER POSSIBLE ADAPTATIONS

1. Biotic & Abiotic Factors

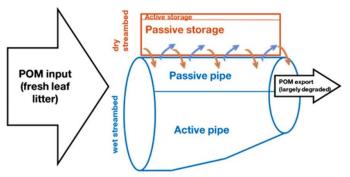
- Temperature
- DOM composition
- · Light availability
- · Different microbial communities

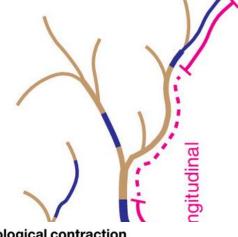
2. Small River Contributions

- · Headwater streams
- · Spring-fed streams

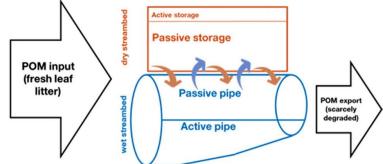
3. Autochthonous Terrestrial Sources

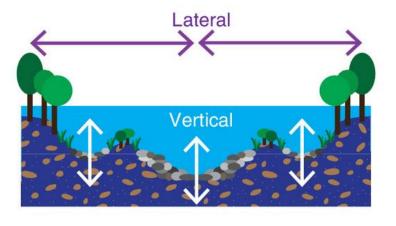
- · Algal Blooms
- · Aquatic Vegeation
- · Periphyton (biofilms)

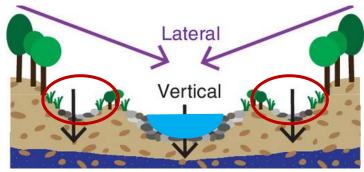

PULSE-SHUNT-STORAGE


(CATALAN ET AL., 2022)

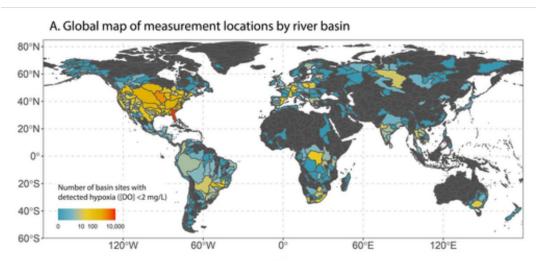
Non-perennial river networks:


- high hydrological contraction
- → Storage and dry-processing of POM (particulate organic matter)


A Low lateral hydrological contraction



B High lateral hydrological contraction


Dry season:

Adapted from Allen D. et al, 2020

INTEGRATING THE PSC TO WHAT WE ALREADY

KNOW: HYPOXIA IN RIVER NETWORKS

From Blaszczak J. R. et al., 2022

- Hypoxia especially problematic in summers
- Storms: higher DOM export and concentration
- Some rivers might be more prone to hypoxia than expected with old models
- → underestimation of hypoxia

Using the PSC to understand the browning of rivers with climate change

- Large amounts of soil organic carbon mobilized and entering streams and rivers
- Humic and fulvic acids (degradation product of vascular plant material) induce browning of surface waters
- Increases in water DOC concentration

Greening of the boreal landscape

- Greening: increase in DOM
- Increased frequency of big hydrologic events: more pulse and shunt of DOM
- Together with higher water temperatures: Threat of hypoxia

CONCLUSIONS

- Frequency and size of hydrological events is crucial to predict DOM fluxes.
- PSC shows fluxes of DOM across stream orders
- Could be expanded to incorporate multiple landscape functional units, for example with a storage component
- Underscores the power of integrating scaling laws into biogeochemical research
- Research gaps: decomposition constants & residence times
- Provides a better conceptualization of the role of river networks in the global C cycle considering influence of hydrologic variability

BIBLIOGRAPHY

- Allen, D. C., Datry, T., Boersma, K. S., Bogan, M. T., Boulton, A. J., Bruno, D., ... & Zimmer, M. A. (2020). River ecosystem conceptual models and non-perennial rivers: a critical review.
 WIREs Water, 7(5). https://doi.org/10.1002/wat2.1473
- Catalàn, N., Campo, R.d., Talluto, L. *et al.* Pulse, Shunt and Storage: Hydrological Contraction Shapes Processing and Export of Particulate Organic Matter in River Networks. *Ecosystems* **26**, 873–892 (2023). https://doi.org/10.1007/s10021-022-00802-4
- Blaszczak, J.R., Koenig, L.E., Mejia, F.H., Gómez-Gener, L., Dutton, C.L., Carter, A.M., Grimm, N.B., Harvey, J.W., Helton, A.M. and Cohen, M.J. (2023), Extent, patterns, and drivers of hypoxia in the world's streams and rivers. Limnol. Oceanogr. Lett, 8: 453–463.
 https://doi.org/10.1002/lol2.10297